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Abstract
We consider the full solution of McMillan’s molecular model of the smectic
A phase within the mean-field approximation, expressing the free energy (or
the effective one-particle mean-field energy) of the model in terms of an
infinite set of orientational and translational order parameters. The general
formalism reduces to the usual McMillan theory (hereafter referred to as
McMillan’s approximation) when second- and higher-order harmonics in the
Fourier expansion are neglected, which leads to a description of the smectic
phase in terms of the leading order parameters. The effects of such a truncation
on the location of the tricritical nematic–smectic A point have been previously
considered by Longa (1986 J. Chem. Phys. 85 2974). A quantitative analysis
to assess the relative importance of the neglected terms in the description of the
smectic phase and its various transitions is reported. It is shown that McMillan’s
approximation underestimates both orientational and translational order, and
leads to values of the transition entropies smaller than those resulting from the
full expansion.

1. Introduction

Smectic liquid crystals are known to be condensed phases of matter characterized by some
degree of translational order in addition to the long-range orientational order. The simplest
type is the smectic A (SmA) phase, where the molecules are arranged in liquid layers in which
the long molecular axes are, on average, normal to the layers. Hence, the centres of mass of the
molecules form a well-defined one-dimensional density wave along the layer normal while the
system remains fluid-like in the smectic planes.

One of the earliest and simplest molecular-based theories of the SmA phase was given by
McMillan [1, 2], based on the assumption that smectic ordering is promoted by the anisotropic
attractive interactions. The theory is formulated in terms of a specific phenomenological
molecular model, which is an extension of the Maier–Saupe model [3] for nematics. For axially
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symmetric molecules located at positions r1 and r2, with orientations defined by the axial unit
vectors û1 and û2, the pair interaction is assumed to be of the form

u(1, 2) = u0(r12) + u2(r12)P2(û1 · û2), (1)

where r12 = |r2 −r1| is the distance between the centres of mass of the molecules, and P2 is the
second-order Legendre polynomial. In his seminal papers [1, 2], McMillan adopted a simple
Gaussian form for the distance dependence of the interactions:

u0(r12) = −ε0δ exp[−(r12/r0)
2], (2a)

u2(r12) = −ε0 exp[−(r12/r0)
2], (2b)

where r0 is the range of the interactions, ε0 is the strength of the anisotropic term, and δ is
the (dimensionless) strength of the isotropic term (2a) relative to the anisotropic term (2b).
Different versions of McMillan’s model have been proposed by a number of authors [4–12].
For a recent account, see [13] and references therein. In all cases, the theory is formulated
within the mean-field approximation, and an approximate solution is obtained considering a
truncated Fourier–Legendre expansion of the intermolecular interaction, the effective (mean-
field) energy, or the one-particle distribution function (see, however, [11]). Such a truncation
involves a description of the SmA phase in terms of a limited number of order parameters.
Typically, only the first-order term in the Fourier–Legendre expansion is considered, which
leads to a description of the SmA phase in terms of the leading order parameters η, τ , and σ

(orientational, translational, and mixed translation–orientation order parameters, respectively,
to be defined later). Within this approximate scheme the theory is seen to depend on η and σ

when δ = 0 in (2a), whereas in the most general case (δ �= 0), the theory depends additionally
on τ .

For most smectics, a description based on this truncated scheme appears to be justified
considering that the intensity of the first peak in typical x-ray measurements is orders of
magnitude larger than the intensity associated with higher-order harmonics [14]. However,
exceptions where the intensity of successive peaks is not negligible are not rare (for example,
lyotropic smectics which are less compressible than typical thermotropic smectics [15]).
Moreover, as pointed out by Gunther et al [16], even the absence of higher-order peaks in the
scattering pattern does not necessarily imply the absence of higher-order Fourier components
in the density.

The purpose of this work is to go beyond the truncation scheme at the level of the first-
order harmonic (hereafter, referred to as McMillan’s approximation), obtaining an essentially
exact numerical solution of McMillan’s model within the mean-field approximation. A
quantitative comparison between the results so obtained and those obtained within McMillan’s
approximation will allow us to gauge the relative importance of higher-order harmonics in
the description of the SmA phase. This question has been partly addressed by Longa [11], who
analysed the effect of including higher-order components on the critical and tricritical behaviour
of McMillan’s model. As shown by Longa [11], the nature of the smectic A–nematic transition
and the location of the tricritical temperature are fully determined by the two lowest-order terms
in the Fourier expansion for a broad class of molecular models. As for the tricritical parameters,
the contribution of the second-order terms—neglected in McMillan’s approximation—is found
to be small, the relative difference between the exact [11] and the approximate values [17]
being about 2%. While the nature of the transitions involving the smectic A phase is not
significantly affected by the truncation scheme assumed in McMillan’s approximation, it is
not obvious whether the predicted values of the transition properties (e.g. degree of order or
transition entropy) and the thermodynamic properties of the smectic phase are sensitive to
the approximation. In particular, it is known that the experimental magnitudes of the entropy
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changes at the (first-order) smectic A–nematic and smectic–isotropic transitions are grossly
overestimated within McMillan’s approximation [1]. Though this discrepancy is most likely
due to the use of a mean-field approximation, it is unknown to what extent the differences
between theoretical predictions and experimental values are due to the use of a truncated
approximation.

We organize this paper as follows. In section 2 we outline a general description of
McMillan’s model within the mean-field approximation. Expressions are obtained for the
effective (mean-field) energy and the Helmholtz free energy in terms of an infinite set of
translational and orientational order parameters. In section 3 we derive general equations for the
critical and tricritical smectic A–nematic transition parameters from a Landau-type expansion
of the free energy [11, 17, 18]. We present our numerical results in section 4, focusing
on the differences between the approximate and exact treatments of McMillan’s model. We
summarize our conclusions in section 5.

2. Theoretical background

2.1. Mean-field description

We consider a system of N axially symmetric molecules in a volume V at temperature T .
The thermodynamic and structural properties of the system can be analysed in terms of the
Helmholtz free energy F , which depends functionally on the one-particle density ρ(1) ≡
ρ(r1, ω1). The latter is defined as the density of particles at position r1 with orientations
ω1 = (θ1, φ1). At given thermodynamic conditions, the equilibrium one-particle density
follows from minimization of the free energy functional F[ρ]. Considering the form of the
intermolecular interactions given in (1), (2a), and (2b), the free energy can be expressed as an
ideal term, plus a contribution arising from the (attractive) intermolecular interactions. Using
the notation d1 = dr1 dω1,

F[ρ] = kT
∫

d1ρ(1) ln[4πρ(1)/ρ0] + 1
2

∫
d1 d2 u(1, 2)ρ(2)(1, 2), (3)

where k is Boltzmann’s constant, ρ0 = N/V is the average number density, and ρ(2)(1, 2) is
the two-particle density. We assume, in keeping with the mean-field approximation, that short-
range correlations can be ignored and consider ρ(2)(1, 2) ≈ ρ(1)ρ(2). At any temperature, the
equilibrium ρ(1) follows from the stationary condition δF/δρ(1) = 0. Minimizing the free
energy functional under the constraint

∫
d1 ρ(1) = N yields

ρ(1) = ρ0

4π

1

Z
exp [−βueff(1)] , (4)

where β = (kT )−1, and ueff is the one-body effective potential defined as

ueff(1) =
∫

d2 ρ(2)u(1, 2). (5)

Z ensures the normalization of the one-particle density and is explicitly given by

Z = 1

4πV

∫
d1 exp [−βueff(1)] . (6)

Further simplifications can be introduced after considering the symmetry properties of the
phases to be described. The most general one-particle density appropriate for a description of
isotropic (I), nematic (N), and SmA phases is of the form ρ(z, cos θ), where the z axis is taken
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along the average direction of alignment (director), and θ is the angle between the molecular
axis and the director. Equation (4) now reads

ρ(z, cos θ) = ρ0

4π

1

Z
exp [−βueff(z, cos θ)] , (7)

where

ueff(z1, cos θ1) =
∫

d2 ρ(z2, cos θ2)u(1, 2). (8)

The solution of the integral equation (7) provides the equilibrium one-particle density at each
input temperature. The I phase is characterized by a constant ρ(z, cos θ) = ρ0/(4π), the N
phase by ρ(z, cos θ) = ρ(cos θ), and the SmA phase by ρ(z, cos θ) with periodicity d in
the space variable z. It is straightforward to show that, after substitution of the (equilibrium)
ρ(z, cos θ) into (3), the free energy can be expressed in terms of the average of the effective
potential. Explicitly, we obtain

F

NkT
= −1

2
〈βueff〉 − ln Z . (9)

Similarly, the energy per particle can be written as
U

NkT
= 1

2
〈βueff〉, (10)

and the entropy follows from the thermodynamic relation F = U − T S.

2.2. The effective potential

In order to obtain the exact solution of McMillan’s model the integral equation (7) has to
be solved numerically. This is not a trivial task particularly for the smectic phase: due to
the periodicity of the one-particle density, the evaluation of ueff from (8) implies numerical
integration of a function that can be a very slowly decaying function of z. Alternatively, one
can use the symmetry properties of the smectic phase and expand the one-particle density in
terms of Legendre polynomials (for the angular variable) and Fourier series (for the spatial
variable):

ρ(z, cos θ) = ρ0

4π

∑
n=0

∑
m=0

2(2m + 1)

1 + δ0n
ρnm cos(nqz)Pm(cos θ), (11)

where q = 2π/d is the wavevector of the density modulation. Owing to the axial symmetry of
the molecules, ρ(z, cos θ) is an even function of cos θ , and so the above expansion is restricted
to even values of m. The expansion coefficients ρnm are order parameters and are given by

ρnm = 〈cos(nqz)Pm(cos θ)〉 (12)

where the angular brackets denote an statistical average. In the following, we consider the
full expansion of the one-particle density and express the effective potential (8) in terms of the
(infinite) set of order parameters ρnm . Considering the form of the intermolecular interactions
(see (1), (2a), and (2b)) it is convenient to write ueff = u(0)

eff + u(2)

eff , with

u(0)
eff (z1, cos θ1) =

∫
dr2 dω2 ρ(z2, cos θ2)u0(r12), (13a)

u(2)

eff (z1, cos θ1) =
∫

dr2 dω2 ρ(z2, cos θ2)u2(r12)P2(cos θ12), (13b)

where dω = dφ d cos θ , and cos θ12 = û1 · û2. Inserting (2a) into (13a) and integrating with
respect to φ2 gives

u(0)

eff (z1, cos θ1) = −4πε0δ

∫
dr2 exp[−(r12/r0)

2]
∫ 1

0
d cos θ2ρ(z2, cos θ2).
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Substituting here the Fourier–Legendre expansion of ρ(z, cos θ) given in (11) and using the
relation

∫ 1
0 dx Pm(x) = δm0 (for m even), we find

u(0)
eff (z1, cos θ1) = −ε0ρ0δ

∑
n=0

2

1 + δ0n
ρn0 In(z1), (14)

where

In(z1) =
∫

dr2 exp[−(r12/r0)
2] cos(nqz2). (15)

After integration with respect to r12 = r2 − r1 (dr12 = dr2), In(z1) is found to be given by

In(z1) = (π)3/2r 3
0

(α

2

)n2

cos(nqz1), (16)

where α = 2 exp[−(πr0/d)2] coincides with the parameter α introduced by McMillan [1].
From its definition, 0 � α � 2. The isotropic contribution to the effective potential is then
given by

βu(0)

eff (z, cos θ) = −δ

t

∑
n=0

2

1 + δ0n

(α

2

)n2

τn cos(nqz), (17)

where we have used the notation τn ≡ ρn0 for the set of translational order parameters and
defined the reduced (dimensionless) temperature t as

t = kT

ε∗ρ∗
0

, (18)

with ε∗ = (π)3/2ε0, and ρ∗
0 = ρ0r 3

0 . Note that τ0 = ρ00 = 1. Similarly, we can express
the anisotropic contribution to the effective potential (13b) in terms of the order parameters.
Making use of the addition theorem of the Legendre polynomials for P2(û1 ·û2) and integrating
with respect to the azimuthal angle, one obtains

u(2)

eff (z1, cos θ1) = −4πε0 P2(cos θ1)

∫
dr2 exp[−(r12/r0)

2]
∫ 1

0
d cos θ2 P2(cos θ2)ρ(z2, θ2).

Substituting the expansion of ρ(z, cos θ) (11) and using the orthogonality relation∫ 1
0 dx P2(x)Pm(x) = δm2/(2m + 1) (for m even), we find

u(2)
eff (z1, cos θ1) = −ε0ρ0 P2(cos θ1)

∑
n=0

2

1 + δ0n
ρn2 In(z1). (19)

Denoting the set of mixed order parameters by σn ≡ ρn2, and using the value of In(z) obtained
in (16), it follows that

βu(2)
eff (z, cos θ) = −1

t
P2(cos θ)

∑
n=0

2

1 + δ0n

(α

2

)n2

σn cos(nqz). (20)

The final expression of the effective potential in terms of the set of order parameters τn and σn

reads

βueff(z, cos θ) = −1

t

∑
n=0

2

1 + δ0n

(α

2

)n2

[δτn + σn P2(cos θ)] cos(nqz). (21)

Summarizing, the mean-field solution of McMillan’s model in terms of the order parameters
σn , τn is given by

ρ(z, cos θ) = ρ0

4π

1

Z
exp[−βueff(z, cos θ)], (22)
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with

Z = 1

d

∫ d

0
dz

∫ 1

0
d cos θexp[−βueff(z, cos θ)]. (23)

The effective potential ueff is given in (21), and the order parameters are given by

σn = 〈P2(cos θ) cos(nqz)〉 = 1

Z

{
1

d

∫ d

0
dz

×
∫ 1

0
d cos θ P2(cos θ) cos(nqz) exp[−βueff(z, cos θ)]

}
(24)

τn = 〈cos(nqz)〉 = 1

Z

{
1

d

∫ d

0
dz

∫ 1

0
d cos θ cos(nqz) exp[−βueff(z, cos θ)]

}
. (25)

Equations (21)–(25) must be solved self-consistently. At each input temperature, three different
solutions are possible depending on the model parameters α and δ: solutions with σn = τn = 0
represent the I phase; solutions with σ0 ≡ η �= 0, σn = τn = 0 for all n � 1 correspond to the N
phase; and solutions with σn �= 0, τn �= 0 correspond to the SmA phase. If the self-consistent
equations accommodate more than one solution at a given temperature, the thermodynamic
stable solution corresponds to the phase with lowest free energy.

2.3. Free energy

As shown in (9), the free energy can be expressed in terms of the average of the effective
potential. From the final expression for ueff given in (21), and using (24) and (25), one
obtains the following expression for the free energy of McMillan’s model in terms of the order
parameters:

F

NkT
= 1

2t

∑
n=0

2

1 + δ0n

(α

2

)n2

(δτ 2
n + σ 2

n ) − ln Z . (26)

As expected, the free energy in the original McMillan’s model (δ = 0) only depends on the set
of order parameters σn . In the most general case (δ �= 0), the free energy depends additionally
on the order parameters τn . The free energy in McMillan’s approximation is recovered by
neglecting terms n � 2 in the above expansion. Recalling that 0 � α � 2, one may anticipate
that these higher-order terms are likely to make a non-negligible contribution to the free energy
for large values of the model parameter α.

3. The smectic A–nematic transition

As shown by McMillan [1, 2], the SmA–N transition may be either first order or continuous
depending on the particular choice of the potential parameters. These two regimes are separated
by a tricritical point, the exact location of which depends on the model parameters α and δ. In
order to locate the line of continuous SmA–N transitions, as well as the tricritical point, we
follow Meyer and Lubensky [18] and consider a Landau expansion of the free energy of the
SmA phase fA around that of the nematic phase fN in powers of the order parameters, where
f ≡ F/NkT . For simplicity, we present our derivation in some detail for the simplest original
McMillan’s model (δ = 0) and outline the derivation for the more general case (δ �= 0) in the
appendix.

According to (26), the free energy for δ = 0 only depends on the set of mixed order
parameters σ = (σ0, σ1, . . .). If �σ = σ − σ N are the deviations of the order parameters from
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their values in the nematic phase, the expansion of the free energy reads

fA(σ ) = fN(σ N) + 1

2!
∑

i j

fσi σ j �σi�σ j + 1

3!
∑
i jk

fσi σ j σk �σi�σ j�σk

+ 1

4!
∑
i jkl

fσi σ j σkσl �σi�σ j�σk�σl + · · · , (27)

where we have used the notation

fσi σ j = (∂2 f/∂σi ∂σ j),

fσi σ j σk = (∂3 f/∂σi ∂σ j∂σk),

etc. All these derivatives are taken in the nematic phase. No linear terms appear in the above
expansion as a result of the condition that f must be a minimum with respect to variations in
the order parameters. From the stationary conditions ∂ f/∂σn = 0 it can be shown that the
deviations of the order parameters in the neighbourhood of the SmA–N transition follow the
asymptotic relations

�σ0 = σ0 − σ0N = η − ηN ∼ σ 2
1 ,

�σn = σn ∼ σ n
1 n � 2,

where we employ the usual convention of denoting the orientational order parameter (σ0) by η.
Considering these relations, and using the leading smectic order parameter σ1 as an independent
variable, the only terms in (27) that contribute to the free energy up to fourth order in σ1 are

fA = fN + 1

2
fσ1σ1σ

2
1 + 1

2
fσ0σ0(�σ0)

2 + 3

3! fσ0σ1σ1�σ0σ
2
1 + 1

4! fσ1σ1σ1σ1σ
4
1

+ 1

2
fσ2σ2σ

2
2 + 3

3! fσ2σ1σ1σ2σ
2
1 + 2

2! fσ0σ2�σ0σ2. (28)

The stationary conditions (∂ f/∂σ0) = 0 and (∂ f/∂σ2) = 0 allow expressing �σ0 and σ2,
respectively, in terms of σ1. It is straightforward to show that �σ0 = a0σ

2
1 + O(σ 4

1 ), and
σ2 = a2σ

2
1 + O(σ 4

1 ) with

a0 = −(1/2) fσ0σ1σ1/ fσ0σ0 ,

a2 = −(1/2) fσ2σ1σ1/ fσ2σ2 .

After substitution in the expansion of the free energy (27), one finally obtains

fA(σ1) = fN + A2σ
2
1 + A4σ

4
1 + O(σ 6

1 ), (29)

where the Landau coefficients A2 and A4 are given in terms of the derivatives of the free energy
as

A2 = 1
2 fσ1σ1 ,

A4 = 1

2
fσ0σ0 a2

0 + 1

2
fσ0σ1σ1 a0 + 1

4! fσ1σ1σ1σ1 + 1

2
fσ2σ2 a2

2 + 1

2
fσ2σ1σ1 a2 + fσ0σ2a0a2.

(30)

The line of continuous SmA–N transitions follows from the solution of the equation A2 = 0
(with A4 > 0); on the other hand, the tricritical point satisfies the set of equations A2 = 0,
A4 = 0. The stability of the tricritical point requires the sixth-order coefficient in the
expansion (29) to be positive. This coefficient was not calculated here. It is important to
note that A2 does not depend on terms n � 2, whereas A4 does not depend on terms n � 3. As
a consequence, differences are to be expected between the approximate and exact solutions for
the tricritical point, and for the loci of the SmA–N critical points through the stability condition
A4 > 0. This has been previously noted by Longa [11]. After calculating the derivatives of the
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free energy appearing in (30) in terms of the reduced temperature and model parameters, the
equations for the continuous SmA–N transition line ((31) below) and the tricritical point ((31)
and (32) below) are

A2 = 1

2

(α

t

) [
1 −

(α

t

) S2

2

]
= 0, (31)

A4 = 1

32

(α

t

)4
[

S2
2 − 1

2
S4 − (S3 − ηNS2)

2

t − S2 + η2
N

− (α/2)4S2
3/2

t − (α/2)4S2

]
= 0, (32)

where we have defined, following Kloczkowski and Stecki [17],

Sn = 〈[P2(x)]n〉N (33)

where the subscript N indicates that the average is taken over the nematic state (i.e., considering
σn = 0 for n � 1). Equations (31) and (32) coincide with the corresponding equations obtained
by Kloczkowski and Stecki [17] within McMillan’s approximation, except for the last term on
the left-hand side of (32), which is the contribution to A4 due to the second-order terms (n = 2)
not included in McMillan’s approximation.

4. Numerical results

In the following, we consider the numerical solution of the molecular field theory based on
McMillan’s model formulated in section 2, focusing on the differences between predictions
based on the approximate and exact mean-field solutions of the model. We recall that the latter
solution follows from the full expansion of the effective potential keeping as many terms as
necessary to obtain the desired numerical accuracy.

In practice, we make use of an iterative scheme to minimize the free energy and to obtain
the corresponding values of the order parameters and thermodynamic properties for various
combinations of the model parameters α and δ. Using a maximum of five (n = 5) terms
in the Fourier–Legendre expansion of the effective potential ensures a numerical accuracy in
the free energy better than a part in 108 for the values of model parameters considered here.
For values of α close to its maximum value (i.e. α = 2), the series converges rather slowly
and more terms are required to achieve the above-mentioned accuracy; however, we did not
consider the numerical solution of the model for these extreme values of α. The numerical
scheme involves the following steps. For selected values of the model parameters α and δ,
and for each input value of the temperature t , we consider an input guess for the set of order
parameters σ0, . . . , σn and τ1, . . . , τn . The corresponding effective potential and one-particle
density are then obtained from (21) and (22) for a discrete set of values of the spatial and
angular variables. Here, we use a grid of 10 points for each variable in the corresponding
integration range 0 � z/d � 1, and 0 � cos θ � 1. The one-particle density allows us
to calculate a new set of order parameters from (24) and (25). All integrations are performed
using a 10-point Gauss–Legendre quadrature [19]. This process is repeated until two successive
distributions ρ(z, cos θ) are found to differ by less than 10−10 for all values of z and cos θ .
When convergence is so achieved, the resulting ρ(z, cos θ) corresponds to the equilibrium one-
particle density, which in turn allows us to determine the values of the order parameters, and
therefore the nature of the most stable phase, as well as the corresponding thermodynamic
properties at the prescribed temperature.

The variation of the leading order parameters (η ≡ σ0, σ ≡ σ1, and τ ≡ τ1) with
temperature is shown in figure 1 for the choice of model parameters α = 0.85, and δ = 0.
For this choice the SmA–N transition is first order. According to the approximate scheme, the
value of the transition temperature is tAN/tNI = 0.9406, a value slightly lower than the exact
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Figure 1. Variation of the leading order parameters η, σ , and τ (see the text for their definition)
with reduced temperature t in McMillan’s model with parameters α = 0.85, and δ = 0. The solid
lines correspond to the exact solution; the dashed lines correspond to McMillan’s approximation.
The temperature is expressed in units of the reduced N–I transition temperature tNI.

value (tAN/tNI = 0.9436). Here, tNI = 0.220 19 corresponds to the N–I transition temperature,
which coincides with the value obtained within the Maier–Saupe theory. The effects of the
neglected harmonics become more apparent when the variation with temperature of the degree
of order and thermodynamic properties of the SmA phase is analysed. From figure 1 we infer
that the approximate solution underestimates the values of the order parameters in the SmA
phase at all temperatures t < tNA. The effect of the truncation at the first-harmonic level on
the thermodynamic properties of the SmA phase is illustrated in figure 2, where we display the
variation of the internal energy U/(NkT ) and entropy S/(Nk) with temperature for the same
set of model parameters (α = 0.85, and δ = 0). According to figure 2, the absolute magnitudes
of both thermodynamic properties are systematically underestimated at all temperatures in the
SmA phase within McMillan’s approximation.

We now turn to analysing the effect of neglecting higher-order harmonics on the
stabilization of the smectic phase and on the nature of the SmA–N and SmA–I transitions. The
phase diagram of McMillan’s model as a function of α is shown in figure 3 for selected values
of the model parameter δ. Also included for comparison are the corresponding transition lines
obtained within McMillan’s approximation. The SmA–N transition is continuous for α < αtc

and turns first order for αtc < α < αtp. Here, αtc locates the tricritical point (tc) and αtp the
triple point (tp) for each value of δ. For α > αtp, the N phase is no longer stable and the SmA
phase melts directly into the I phase upon heating, the transition being first order. Values for
the tricritical and triple point parameters are included in table 1 for selected values of δ. As tNI

does not depend on the model parameters α and δ, it follows that ttp/tNI = 1. The tricritical
points are obtained by solving numerically the set of equations A2 = 0, and A4 = 0, where
the Landau coefficients A2 and A4 are given in (A.2) and (A.3). Our numerical results for the
tricritical parameters are found to be in full agreement with those reported by Longa [11]. It
is found that the relative difference between the approximate and exact values of the tricritical
temperatures is small and decreases with increasing δ, which indicates that the second-order
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Figure 2. Variation of the entropy S/(Nk) and the internal energy U/(NkT ) with reduced
temperature t in McMillan’s model with parameters α = 0.85, and δ = 0. The solid lines
correspond to the exact solution; the dashed lines correspond to McMillan’s approximation. The
reduced temperature is expressed in units of the N–I transition temperature tNI.

harmonic has little effect in the tricritical region. The lines of continuous SmA–N transitions
for t < ttc are obtained by solving A2 = 0. This equation contains no contributions from
harmonics n > 1 and therefore no differences between the exact and approximate solutions are
to be expected, as can be observed in figure 3. The lines of first-order SmA–N (for temperatures
ttc < t < ttp) and SmA–I transitions (for temperatures t > ttp) are calculated by equating
the free energy of the corresponding phases according to (26). As can be seen in figure 3,
the explicit consideration of the terms neglected in McMillan’s approximation does not bring
about qualitative changes in the topology of the phase diagram of the model. Whenever the
SmA–N transition is continuous, the neglected harmonics are proportional to order parameters
which vanish at tNA and, as a result, including these new terms does not give rise to shifts in
the transition temperatures. However, this is no longer the case when the transition from the
SmA to the I or N phases happens to be first order. In this case, a description based on the
truncation scheme at the level of n = 1 is seen to underestimate the values of the transition
temperatures: the relative difference between the exact and approximate predictions becomes
increasingly important with increasing α or decreasing δ.

We include in table 2 numerical results for a number of properties at the first-order SmA–N
and SmA–I transitions for selected values of the parameter α with δ = 0. For this value of δ,
we find αtc = 0.6951 and αtp = 0.9659 (see table 1). An inspection of the data included in
table 2 shows that the order parameters, excess orientational order, and entropy change at the
transitions are systematically underestimated within the truncated scheme. Differences between
the approximate and exact values are seen to become increasingly large with increasing value
of the model parameter α.

Numerical results are presented in figures 4 and 5 for the values of the leading order
parameters at the SmA–N and SmA–I transitions, respectively, in McMillan’s model for
different values of δ. In all cases, it is observed that neglecting harmonics n � 2 underestimates
the degree of order at both transitions, the effect being increasingly noticeable for decreasing
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Figure 3. Phase diagram of McMillan’s model in terms of the model parameter α and different
values of δ shown as labels on the curves. The lines separate the regions of stability of the isotropic
(I), nematic (N) and smectic A (SmA) phases. The solid lines correspond to the exact solution; the
dashed lines correspond to McMillan’s approximation; the dashed–dotted line is the N–I transition
line. The circles locate the tricritical points on the SmA–N transition lines and the squares the triple
points. Open symbols are for the exact solution, and filled symbols are for the approximate solution.

Table 1. Comparison between the approximate and exact locations of the SmA–N tricritical (tc)
and the triple (tp) points for selected values of the model parameter δ in McMillan’s model. t is
the reduced temperature and tNI = 0.220 19 is the reduced N–I transition temperature. Note that
ttp/tNI = 1 for all values of δ.

Approximate Exact

δ αtc ttc/tNI αtp αtc ttc/tNI αtp

−0.2 1.0222 0.8927 1.3241 0.9542 0.8647 1.2611
−0.1 0.8239 0.8698 1.1414 0.7985 0.8578 1.1039

0.0 0.7070 0.8696 0.9858 0.6951 0.8632 0.9659
0.1 0.6261 0.8772 0.8592 0.6196 0.8733 0.8488
0.2 0.5650 0.8878 0.7564 0.5612 0.8852 0.7508
0.3 0.5165 0.8995 0.6721 0.5141 0.8977 0.6691
0.4 0.4766 0.9113 0.6022 0.4750 0.9101 0.6005
0.5 0.4428 0.9229 0.5436 0.4417 0.9219 0.5426

values of δ. The difference between the exact and approximate results becomes particularly
large at the SmA–I transition, as the transition temperature—and correspondingly, the model
parameter α—increases.

Finally, we show in figure 6 the model predictions of the transition entropy at the first-
order SmA–N and SmA–I transitions versus transition temperature. The solid lines correspond
to the exact values and the dashed lines correspond to the predictions within McMillan’s
approximation. Though the experimental trend (increasing absolute values of the transition
entropy with increasing temperature ratio tAN/tNI) is correctly predicted, it is known that
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Table 2. Comparison between the approximate and exact numerical results for properties at
the first-order SmA–N and SmA–I transitions for selected values of the model parameter α in
McMillan’s model with δ = 0. The transition temperatures are expressed in terms of the reduced N–
I transition temperature tNI = 0.220 19, �η is the excess orientational order at the transition, σ and
τ are the mixed and translational order parameters at the SmA side of the transition, respectively.
�SAN = SA − SN is the entropy change at the SmA–N transition, and �SAI = SA − SI is the
corresponding change at the SmA–I transition in units of Nk.

Approximate Exact

α tAN/tNI �η σ τ �SAN tAN/tNI �η σ τ �SAN

0.85 0.9406 0.119 0.359 0.432 −0.628 0.9436 0.142 0.404 0.485 −0.770
0.90 0.9634 0.170 0.407 0.488 −0.844 0.9683 0.201 0.458 0.548 −1.033
0.95 0.9852 0.231 0.447 0.534 −1.069 0.9925 0.277 0.505 0.602 −1.323

α tAI/tNI �η σ τ �SAI tAI/tNI �η σ τ �SAI

1.00 1.0044 0.723 0.487 0.580 −1.719 1.0131 0.754 0.557 0.660 −1.994
1.05 1.0207 0.739 0.525 0.623 −1.859 1.0342 0.770 0.599 0.707 −2.167
1.10 1.0380 0.749 0.552 0.653 −1.916 1.0575 0.783 0.632 0.742 −2.315
1.20 1.0744 0.762 0.589 0.693 −2.108 1.1107 0.802 0.684 0.780 −2.577
1.50 1.1916 0.779 0.646 0.752 −2.349 1.3497 0.845 0.792 0.906 −3.320

McMillan’s approximation overestimates the experimental values [1]. As follows from earlier
discussion, when the terms neglected in McMillan’s approximation are explicitly considered
the transition to the SmA phase is found to be more strongly first order, which in turn results in
values for the transition entropy larger than those resulting in McMillan’s approximation. This
is clearly illustrated in figure 6. We then conclude that the lack of quantitative agreement is not
to be attributed to the truncation scheme. One of the reasons for this discrepancy is probably
related to the use of a mean-field approximation [1, 2] in which contributions to the free energy
arising from fluctuations of the order parameters are neglected. Additionally, any molecular
theory aiming for quantitative accuracy should include the packing effects of anisotropic hard
cores, an ingredient that is lacking in McMillan’s model.

5. Conclusion

McMillan’s model is arguably the simplest molecular model for the SmA liquid crystalline
phase. Smectic ordering in the model is due to the anisotropic attractive intermolecular
interactions: hard-core repulsions are not explicitly considered, although their effects are
obviously expected to be of importance in a more general description of real smectics. An
approximate solution of the model can be obtained within the framework of the mean-field
approximation. It is common practice to consider a further simplification that implies truncation
of the one-particle density (or, similarly, of the effective one-particle potential) at the level of
the first harmonic in the Fourier expansion. This is what has been referred to here as McMillan’s
approximation, which leads to a formulation of the properties of the smectic A phase in terms
of the dominant order parameters η, σ , and τ . Here, we have solved McMillan’s model—still
within the mean-field approximation—with explicit consideration of higher-order harmonics.
A comparison with the numerical calculations obtained within McMillan’s approximation has
allowed us to assess the relative importance of these (neglected) terms in the description of the
properties of the SmA phase.

According to our results, including additional harmonics does not affect the predictions
of tNA for those combinations of model parameters for which the SmA–N transition is
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Figure 4. The values of the leading order parameters at the SmA–N transition for different values
of the model parameter δ, shown as labels on the plot: (a) the excess orientational order parameter
�η = ηA − ηN, (b) the mixed order parameter σ , and (c) the translational order parameter
τ . The solid lines correspond to the exact solution; the dashed lines correspond to McMillan’s
approximation. The temperature tAN at the SmA–N transition is expressed in units of the reduced
N–I transition temperature tNI.

continuous: in agreement with previous findings [11], the truncation scheme implicit in
McMillan’s approximation has no effect on the location of the continuous SmA–N transition
whatsoever. The tricritical temperature is fully determined by terms involving the first and
second harmonics: the latter are not included in McMillan’s approximation, but their explicit
consideration essentially brings about only small corrections to the tricritical temperature.
Whenever the transition involving the SmA phase is first order, a theoretical description based
on the dominant order parameters (McMillan’s approximation) is seen to shift the transition
temperatures to slightly lower values: this shift becomes quantitatively important with
increasing values of α and decreasing values of δ. Additionally, McMillan’s approximation
is seen to systematically underestimate the degree of orientational and translational order
in the SmA phase at all temperatures, and at the SmA–I and SmA–N transitions. Also,
a formulation based on the truncated expansion underestimates the absolute magnitude of
thermodynamic properties, such as the free energy, entropy, energy, and specific heat (not
shown here) of the SmA phase at all temperatures, as well as their changes at the first-order
SmA–N and SmA–I transitions. In general, these differences are seen to grow with increasing
values of the model parameter α, i.e., as the corresponding transition turns more strongly first
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Figure 5. The values of the leading order parameters at the SmA–I transition for different values of
the model parameter δ, shown as labels on the plot: (a) the orientational order parameter η, (b) the
mixed order parameter σ , and (c) the translational order parameter τ . The solid lines correspond to
the exact solution; the dashed lines correspond to McMillan’s approximation. The temperature tAI

at the SmA–I transition is expressed in units of the reduced N–I transition temperature tNI.

order. One should bear in mind that it is standard practice to correlate model parameters and
molecular structure in smectic compounds from measurements of transition properties, such
as the transition temperature, entropy of transition, and changes in order parameters, when the
transition involving the smectic phase is first order [10]. According to our results, the lack of
quantitative agreement between theoretical predictions and experimental data for the transition
entropy (and, presumably, for other quantities) is not a consequence of the truncation assumed
in McMillan’s approximation. Among other factors, these differences are likely to be due to
the oversimplified form of the interactions and the use of the mean-field approximation.

We finally remark that a truncated approximation has also been used in closely related
problems involving McMillan’s model. For example, this approximation was considered by
Hama [20] to investigate the effects of an orienting (magnetic or electric) field on the (first-
order) SmA–N transition. As shown by Hama, a field-induced tricritical point is predicted
as the intensity of the external field is increased. This prediction remains valid when the full
mean-field treatment considered here is carried out. Quantitatively, however, the truncated
approximation is found to underestimate the values of the tricritical field by as much as 30–
70%, depending on the model parameters. Similarly, one might anticipate that quantitative
discrepancies between the truncated approximation and the full treatment will occur in the
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Figure 6. The entropy change at the (a) SmA–N transition �SAN = SA − SN, and (b) SmA–I
transition �SAI = SA − SI, as a function of the transition temperatures (in units of the reduced
N–I transition temperature tNI) for several values of the model parameter δ shown as labels on the
plot. The solid lines correspond to the exact solution; the dashed lines correspond to McMillan’s
approximation.

description of the properties of the first-order nematic–columnar transition within the extension
of McMillan’s model to discotic liquid crystals [21].
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Appendix

Here we outline the derivation of the equation of the critical lines and tricritical points arising
in McMillan’s model with δ �= 0 (general case). In this case, the free energy depends not
only on the set of order parameters σ but also on the set of translational order parameters
τ = (τ1, τ2, . . .). An expansion of the free energy of the SmA phase in terms of the order
parameters contains, in addition to the terms appearing in (28), contributions from τ , as well
as contributions coupling σ and τ . From the stationary conditions (∂ f/∂τn) = 0 one can show
that the following asymptotic relations hold in the neighbourhood of the SmA–N transition:

�τn = τn ∼ σ n
1 n � 1.

Using these asymptotic relations, the extra terms up to fourth order in σ1 appearing in the
free energy given in (28) are
1
2 fτ1τ1τ

2
1 + 1

2 fτ2τ2τ
2
2 + fσ0τ2�σ0τ2 + fσ1τ1σ1τ1 + fσ2τ2σ2τ2

+ 3

3! fσ0τ1τ1�σ0τ
2
1 + 3

3! fτ2σ1σ1τ2σ
2
1 + 3

3! fσ2τ1τ1σ2τ
2
1

+ 3

3! fτ2τ1τ1τ2τ
2
1 + 6

3! fσ0σ1τ1�σ0σ1τ1 + 6

3! fσ1σ2τ1σ1σ2τ1

+ 6

3! fσ1τ1τ2σ1τ1τ2 + 4

4! fσ1σ1σ1τ1σ
3
1 τ1 + 6

4! fσ1σ1τ1τ1σ
2
1 τ 2

1

+ 4

4! fσ1τ1τ1τ1σ1τ
3
1 + 1

4! fτ1τ1τ1τ1τ
4
1 . (A.1)
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The stationary conditions can be solved for the order parameters �σ0, σ2, τ1, and τ2 in
terms of σ1. After substitution in the expansion of the free energy we obtain a Landau free
energy (see (29)) with coefficients

A2 = Aapp
2 + Anew

2 , (A.2)

A4 = Aapp
4 + Anew

4 , (A.3)

where the superscript ‘app’ indicates the corresponding value obtained within McMillan’s
approximation (σn = τn = 0 for all n � 2) and ‘new’ refers to the extra contribution arising
from higher-order (n = 2) terms. After some algebra, one finds

Aapp
2 = 1

2

(α

t

) [
1 −

(α

t

) S2

2
− (α/t)2η2

Nδ/4

1 − (α/t)δ/2

]
(A.4)

Anew
2 = 0 (A.5)

where ηN is the orientational order parameter in the nematic phase, and S2 is defined in (33);
the Landau coefficient A4 is given by

Aapp
4 = 1

32

(α

t

)4
{

S2
2 − 1

2
S4 + 2(2S2ηN − S3)X + (4η2

N − S2)X2

+ 2ηN X3 + 1

2
X4 −

[
(S3 − S2ηN + 2(S2 − η2

N)X
]2

t − S2 + η2
N

}
(A.6)

Anew
4 = −1

32

(α

t

)4
B

{[t − (α/2)4δ](S3 + 2S2 X + ηN X2)2

+ [t − (α/2)4S2](S2 + 2ηN X + X2)2δ

+ 2(α/2)4ηN(S3 + 2S2 X + ηN X2)(S2 + 2ηN X + X2)δ
}

(A.7)

where we have defined X and B as

X = (α/t)ηNδ

2 − (α/t)δ
, (A.8)

B = (α/2)4/2

[t − (α/2)4S2][t − (α/2)4δ] − (α/2)8η2
Nδ

. (A.9)

The lines of SmA–N critical points follow from the solution of the equation A2 = 0, and the
tricritical points from the solution of the set of equations A2 = 0, A4 = 0. These equations
reduce to (31) and (32) for the case δ = 0. As shown in section 3, higher-order harmonics
make no contribution to A2 (Anew

2 = 0), but they do contribute to A4 (Anew
4 �= 0). If these

contributions are neglected, one recovers the corresponding equations obtained by Kloczkowski
and Stecki [17] within McMillan’s approximation.
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